Students leaving Algebra I and choosing to enroll in Geometry 9 Honors are required to have an understanding of these skills. It will be assumed that students can complete problems similar to those in this packet upon arriving on the first day of class. Although the practice problems will not be checked for a grade, these skills will be assessed by a test during the first week of class. This test will assess the students' understanding of the 6 topics in this packet. Use this packet as a resource to review and practice these 6 topics. The test will be worth 10% of a student's first marking period grade.

Purpose: The purpose of this assignment is to help students and their parents determine whether or not they are prepared for Geometry 9 Honors. Students' test results will be reported to the students within the first week of the semester.

Outcome: The Geometry 9 Honors teacher of any student who receives a D (69%) or lower on the test will contact the student's parent and guidance counselor to discuss either an alternate course selection or what actions the student would need to take to stay in the course and be successful.

Help: Students working on this packet who require help can email Dr. Motzer at emotzer@tvsd.org. Emails over the summer will be answered once per week. Emails during the school year will be answered more regularly. If you need another copy of this packet, it is available on the high school library website. You can also stop by the high school office to pick up a copy if you do not have internet access.

Geometry 9 Honors Prerequisite Skills to be Tested:

- Graphing Lines
- Solving equations with variable on both sides
- Quadratic Formula
- Simplifying Quadratics by: factoring, zero product property, and multiplying binomials
- Solving Systems of Equations
- Laws of Positive Exponents
WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE

SLOPE is a number that indicates the steepness (or flatness) of a line, as well as its direction (up or down) left to right.

SLOPE is determined by the ratio: \(\frac{\text{vertical change}}{\text{horizontal change}} \) between any two points on a line.

For lines that go up (from left to right), the sign of the slope is positive. For lines that go down (left to right), the sign of the slope is negative.

Any linear equation written as \(y = mx + b \), where \(m \) and \(b \) are any real numbers, is said to be in SLOPE-INTERCEPT FORM. \(m \) is the SLOPE of the line. \(b \) is the Y-INTERCEPT, that is, the point \((0, b)\) where the line intersects (crosses) the y-axis.

If two lines have the same slope, then they are parallel. Likewise, PARALLEL LINES have the same slope.

Two lines are PERPENDICULAR if the slope of one line is the negative reciprocal of the slope of the other line, that is, \(m \) and \(-\frac{1}{m} \). Note that \(m \cdot \left(-\frac{1}{m} \right) = -1 \).

Examples: \(3 \) and \(-\frac{1}{3} \), \(-\frac{2}{3} \) and \(\frac{3}{2} \), \(\frac{5}{4} \) and \(-\frac{4}{5} \).

Two distinct lines on a flat surface that are not parallel intersect in a single point.
Example 1

Graph the linear equation \(y = \frac{4}{7} x + 2 \)

Using \(y = mx + b \), the slope is \(\frac{4}{7} \) and the y-intercept is the point (0, 2). To graph, begin at the y-intercept (0, 2). Remember that slope is \(\frac{\text{vertical change}}{\text{horizontal change}} \) so go up 4 units (since 4 is positive) from (0, 2) and then move right 7 units. This gives a second point on the graph. To create the graph, draw a straight line through the two points.

Example 2

A line has a slope of \(\frac{3}{4} \) and passes through (3, 2). What is the equation of the line?

Using \(y = mx + b \), write \(y = \frac{3}{4} x + b \). Since (3, 2) represents a point \((x, y)\) on the line, substitute 3 for \(x \) and 2 for \(y \), \(2 = \frac{3}{4} (3) + b \), and solve for \(b \).

\[
2 = \frac{9}{4} + b \quad \Rightarrow \quad 2 - \frac{9}{4} = b \quad \Rightarrow \quad -\frac{1}{4} = b.
\]

The equation is \(y = \frac{3}{4} x - \frac{1}{4} \).
Example 3

Find two equations of the line through the given point, one parallel and one perpendicular to the given line: \(y = -\frac{5}{2} x + 5 \) and \((-4, 5)\).

For the parallel line, use \(y = mx + b \) with the same slope to write \(y = -\frac{5}{2} x + b \).

Substitute the point \((-4, 5)\) for \(x \) and \(y \) and solve for \(b \).

\[
5 = -\frac{5}{2} (-4) + b \Rightarrow \quad 5 = \frac{20}{2} + b \Rightarrow \quad -5 = b
\]

Therefore the parallel line through \((-4, 5)\) is \(y = -\frac{5}{2} x - 5 \).

For the perpendicular line, use \(y = mx + b \) where \(m \) is the negative reciprocal of the slope of the original equation to write \(y = \frac{2}{5} x + b \).

Substitute the point \((-4, 5)\) and solve for \(b \).

\[
5 = \frac{2}{5} (-4) + b \Rightarrow \quad \frac{33}{5} = b
\]

Therefore the perpendicular line through \((-4, 5)\) is \(y = \frac{2}{5} x + \frac{33}{5} \).
Graph each line.

1. \(y = \frac{1}{2} x - 2 \)
2. \(y = -\frac{3}{5} x - \frac{5}{3} \)
3. \(3x + 2y = 12 \)
4. \(x - y = -13 \)
5. \(2x - 4y = 12 \)
6. \(4y - 2x = 12 \)

Write the equation of the line with:

7. slope = \(\frac{1}{2} \) and passing through (4, 3).
8. slope = \(\frac{2}{3} \) and passing through (-3, -2).

9. slope = -\(\frac{1}{3} \) and passing through (4, -1).
10. slope = -4 and passing through (-3, 5).

Using the slope and y-intercept, determine the equation of the line.

14. \[\begin{array}{c}
\text{Graph 1} \\
\text{Graph 2} \\
\text{Graph 3} \\
\text{Graph 4}
\end{array} \]

Find an equation of the line through the given point and parallel to the given line.

31. \(y = 2x - 2 \) and (-3, 5)
32. \(y = \frac{1}{2} x + 3 \) and (-4, 2)
33. \(x - y = 2 \) and (-2, 3)
34. \(y - x = -1 \) and (-2, 1)
35. \(x + 3y = 6 \) and (-1, 1)
36. \(3x + 2y = 6 \) and (2, -1)
Find an equation of the line through the given point and perpendicular to the given line.

39. \(y = 2x - 2 \) and \((-3, 5)\)

40. \(y = \frac{1}{2} x + 3 \) and \((-4, 2)\)

41. \(x - y = 2 \) and \((-2, 3)\)

42. \(y - x = -1 \) and \((-2, 1)\)

43. \(x + 3y = 6 \) and \((-1, 1)\)

44. \(3x + 2y = 6 \) and \((2, -1)\)

49. Write the equation of the line through \((7, -8)\) which is parallel to the line through \((2, 5)\) and \((8, -3)\)

50. Write the equation of the line through \((1, -4)\) which is parallel to the line through \((-3, -7)\) and \((4, 3)\)
Answers

1. (0, -2)
2. \(\left(0, -\frac{5}{3}\right) \)
3. (0, 6)
4. (0, 13)

5. (0, -3)
6. (0, 3)
7. \(y = \frac{1}{2} x + 1 \)
8. \(y = \frac{2}{3} x \)

9. \(y = -\frac{1}{3} x + \frac{1}{3} \)
10. \(y = -4x - 7 \)

14. \(y = 2x - 2 \)
15. \(y = -x + 2 \)
16. \(y = \frac{1}{3} x + 2 \)

17. \(y = -2x + 4 \)

31. \(y = 2x + 11 \)
32. \(y = \frac{1}{2} x + 4 \)
33. \(y = x + 5 \)
34. \(y = x + 3 \)

35. \(y = -\frac{1}{3} x + \frac{2}{3} \)
36. \(y = -\frac{3}{2} x + 2 \)

39. \(y = -\frac{1}{2} x + \frac{7}{2} \)
40. \(y = -2x - 6 \)
41. \(y = -x + 1 \)
42. \(y = -x - 1 \)

43. \(y = 3x + 4 \)
44. \(y = \frac{2}{3} x - \frac{7}{3} \)

49. \(y = -\frac{4}{3} x + \frac{4}{3} \)
50. \(y = \frac{10}{7} x - \frac{38}{7} \)
Solving linear equations involves “undoing” what has been done to create the equation. In this sense, solving an equation can be described as “working backward,” generally known as using inverse (or opposite) operations. For example, to undo \(x + 2 = 5 \), that is, adding 2 to \(x \), subtract 2 from both sides of the equation. The result is \(x = 3 \), which makes \(x + 2 = 5 \) true. For \(2x = 17 \), \(x \) is multiplied by 2, so divide both sides by 2 and the result is \(x = 8.5 \). For equations like those in the examples and exercises below, apply the idea of inverse (opposite) operations several times. Always follow the correct order of operations.
Example 1

Solve for x: $2(2x - 1) - 6 = -x + 2$

First distribute to remove parentheses, then combine like terms.

$4x - 2 - 6 = -x + 2$

$4x - 8 = -x + 2$

Next, move variables and constants by addition of opposites to get the variable term on one side of the equation.

$4x - 8 = -x + 2$

$+x +x$

$5x - 8 = 2$

$5x - 8 = 2$

$+8 +8$

$5x = 10$

Now, divide by 5 to get the value of x.

$\frac{5x}{5} = \frac{10}{5} \quad \Rightarrow \quad x = 2$

Finally, check that your answer is correct.

Example 2

Solve for y: $2x + 3y - 9 = 0$

This equation has two variables, but the instruction says to isolate y. First move the terms without y to the other side of the equation by adding their opposites to both sides of the equation.

$2x + 3y - 9 = 0$

$+9 +9$

$2x + 3y = 9$

$-2x\quad -2x$

$3y = -2x + 9$

Divide by 3 to isolate y. Be careful to divide every term on the right by 3.

$\frac{3y}{3} = \frac{-2x + 9}{3} \quad \Rightarrow \quad y = -\frac{2}{3}x + 3$
\[
2(2(2) - 1) - 6 = -(2) + 2 \\
2(4 - 1) - 6 = 0 \\
2(3) - 6 = 0 \\
6 - 6 = 0 \text{ checks}
\]

Solve each equation below.

1. \[5x + 2 = -x + 14\]
2. \[3x - 2 = x + 10\]
3. \[6x + 4x - 2 = 15\]

6. \[\frac{3}{4}x + 2 = -7\]

9. \[3(2x + 2) + 2(x - 7) = x + 3\]
10. \[2(x + 3) + 5(x - 2) = -x + 10\]

11. \[4 - 6(w + 2) = 10\]

Solve for the named variable.

17. \[3x + 2y = 6 \text{ (for y)}\]

18. \[-3x + 5y = -10 \text{ (for y)}\]
19. \[y = mx + b \text{ (for b)}\]
20. \[y = mx + b \text{ (for x)}\]
Answers

1. 2
2. 6
3. \(\frac{17}{10}\)

6. -12

9. \(\frac{11}{7}\)
10. \(\frac{7}{4}\)
11. -3

17. \(y = -\frac{3}{2}x + 3\)
18. \(y = \frac{3}{5}x - 2\)
19. \(b = y - mx\)
20. \(x = \frac{y - b}{m}\)
The Quadratic Formula

You have used factoring and the Zero Product Property to solve quadratic equations. You can solve any quadratic equation by using the **QUADRATIC FORMULA**.

If \(ax^2 + bx + c = 0 \), then

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

For example, suppose \(3x^2 + 7x - 6 = 0 \). Here \(a = 3, b = 7, \) and \(c = -6 \).

Substituting these values into the formula results in:

\[
x = \frac{-7 \pm \sqrt{7^2 - 4(3)(-6)}}{2(3)} \Rightarrow x = \frac{-7 \pm \sqrt{121}}{6} \Rightarrow x = \frac{-7 \pm 11}{6}
\]

Remember that non-negative numbers have both a positive and a negative square root. The sign \(\pm \) represents this fact for the square root in the formula and allows us to write the equation once (representing two possible solutions) until later in the solution process.

Split the numerator into the two values: \(x = \frac{-7 + 11}{6} \) or \(x = \frac{-7 - 11}{6} \)

Thus the solution for the quadratic equation is: \(x = \frac{2}{3} \) or -3.

Use the quadratic formula to solve each of the following equations.

1. \(x^2 - x - 6 = 0 \)
2. \(x^2 + 8x + 15 = 0 \)
3. \(x^2 + 13x + 42 = 0 \)
4. \(x^2 - 10x + 16 = 0 \)
13. \(4x^2 - 9x + 4 = 0 \)
14. \(2x^2 - 5x + 2 = 0 \)
15. \(20x^2 + 20x = 1 \)
16. \(13x^2 - 16x = 4 \)
17. \(7x^2 + 28x = 0 \)
18. \(5x^2 = -125x \)
19. \(8x^2 - 50 = 0 \)
20. \(15x^2 = 3 \)
Answers

1. $x = -2, 3$
2. $x = -5, -3$
3. $x = -7, -6$
4. $x = 2, 8$

13. $x = \frac{9 \pm \sqrt{17}}{8}$
14. $x = 2, \frac{1}{2}$
15. $x = \frac{-20 \pm \sqrt{480}}{40} = \frac{-5 \pm \sqrt{30}}{10}$

16. $x = \frac{16 \pm \sqrt{464}}{26} = \frac{8 \pm 2\sqrt{29}}{13}$
17. $x = -4, 0$
18. $x = -25, 0$

19. $x = -\frac{5}{2}, \frac{5}{2}$
20. $x = \pm \frac{\sqrt{5}}{5}$
FACTORING POLYNOMIALS

Often we want to un-multiply or FACTOR a polynomial P(x). This process involves finding a constant and/or another polynomial that evenly divides the given polynomial. In formal mathematical terms, this means \(P(x) = q(x) \cdot r(x) \), where \(q \) and \(r \) are also polynomials. For elementary algebra there are three general types of factoring.

1) **Common term** (finding the largest common factor):

 \(6x + 18 = 6(x + 3) \) where 6 is a common factor of both terms.

 \(2x^3 - 8x^2 - 10x = 2x(x^2 - 4x - 5) \) where 2x is the common factor.

 \(2x^2(x - 1) + 7(x - 1) = (x - 1)(2x^2 + 7) \) where \(x - 1 \) is the common factor.

2) **Special products**

 \(a^2 - b^2 = (a + b)(a - b) \)

 \(x^2 - 25 = (x + 5)(x - 5) \)

 \(9x^2 - 4y^2 = (3x + 2y)(3x - 2y) \)

 \(x^2 + 2xy + y^2 = (x + y)^2 \)

 \(x^2 + 8x + 16 = (x + 4)^2 \)

 \(x^2 - 2xy + y^2 = (x - y)^2 \)

 \(x^2 - 8x + 16 = (x - 4)^2 \)

3a) **Trinomials** in the form \(x^2 + bx + c \) where the coefficient of \(x^2 \) is \(1 \).

 Consider \(x^2 + (d + e)x + d \cdot e = (x + d)(x + e) \), where the coefficient of \(x \) is the sum of two numbers \(d \) and \(e \) AND the constant is the product of the same two numbers, \(d \) and \(e \). A quick way to determine all of the possible pairs of integers \(d \) and \(e \) is to factor the constant in the original trinomial. For example, 12 is \(1 \cdot 12 \), \(2 \cdot 6 \), and \(3 \cdot 4 \). The signs of the two numbers are determined by the combination you need to get the sum. The "sum and product" approach to factoring trinomials is the same as solving a "Diamond Problem" in CPM's Algebra 1 course (see below).

 \(x^2 + 8x + 15 = (x + 3)(x + 5); \ 3 + 5 = 8, \ 3 \cdot 5 = 15 \)

 \(x^2 - 2x - 15 = (x - 5)(x + 3); \ -5 + 3 = -2, \ -5 \cdot 3 = -15 \)

 \(x^2 - 7x + 12 = (x - 3)(x - 4); \ -3 + (-4) = -7, \ (-3)(-4) = 12 \)
The sum and product approach can be shown visually using rectangles for an area model. The figure at far left below shows the "Diamond Problem" format for finding a sum and product. Here is how to use this method to factor $x^2 + 6x + 8$.

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c} \text{product} & 2 & 4 & 8 \\ \text{sum} & 6 & 4 & \end{array} \quad \begin{array}{c|c|c|c|c|c|c|c|c|c|c} x^2 & 4x & \quad & x & 2 \\ \quad & 2x & 8 & \quad & 2x & 8 \\ \end{array} \Rightarrow (x + 4)(x + 2) \]

>> Explanation and examples continue on the next page. >>

3b) **Trinomials** in the form $ax^2 + bx + c$ where $a \neq 1$.

Note that the upper value in the diamond is no longer the constant. Rather, it is the product of a and c, that is, the coefficient of x^2 and the constant.

Below is the process to factor $5x^2 - 13x + 6$.

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} 2x^2 + 7x + 3 \\ \text{multiply} \quad & 6 & 6 & 1 \\ \text{?} & ? & 6 & 7 \end{array} \quad \begin{array}{c|c|c|c|c|c|c|c|c|c|c} 2x^2 & 6x & \quad & 2x & 1 \\ \quad & 1x & 3 & \quad & 1x & 3 \\ \end{array} \Rightarrow (2x + 1)(x + 3) \]

Polynomials with four or more terms are generally factored by grouping the terms and using one or more of the three procedures shown above. Note that polynomials are usually factored completely.

In the second example in part (1) above, the trinomial also needs to be factored. Thus, the complete factorization of $2x^3 - 8x^2 - 10x = 2x(x^2 - 4x - 5) = 2x(x - 5)(x + 1)$.

Factor each polynomial completely.

1. $x^2 - x - 42$
2. $4x^2 - 18$
3. $2x^2 + 9x + 9$
4. $2x^2 + 3xy + y^2$
5. $6x^2 - x - 15$
6. $4x^2 - 25$
7. $x^2 - 28x + 196$
8. $7x^2 - 847$
9. $x^2 + 18x + 81$
10. $x^2 + 4x - 21$
11. $3x^2 + 21x$
12. $3x^2 - 20x - 32$
Factor completely.

28. \(75x^3 - 27x\)
29. \(3x^3 - 12x^2 - 36x\)
30. \(4x^3 - 44x^2 + 112x\)
31. \(5y^2 - 125\)
32. \(3x^2y^2 - xy^2 - 4y^2\)
33. \(x^3 + 10x^2 - 24x\)
Factor each of the following completely. Use the modified diamond approach.

37. \(2x^2 + 5x - 7\)
38. \(3x^2 - 13x + 4\)
39. \(2x^2 + 9x + 10\)
40. \(4x^2 - 13x + 3\)
41. \(4x^2 + 12x + 5\)
42. \(6x^3 + 31x^2 + 5x\)

Answers

1. \((x + 6)(x - 7)\)
2. \(2(2x^2 - 9)\)
3. \((2x + 3)(x + 3)\)
4. \((2x + y)(x + y)\)
5. \((2x + 3)(3x - 5)\)
6. \((2x - 5)(2x + 5)\)
7. \((x - 14)^2\)
8. \(7(x - 11)(x + 11)\)
9. \((x + 9)^2\)
10. \((x + 7)(x - 3)\)
11. \(3x(x + 7)\)
12. \((x - 8)(3x + 4)\)
27. \((x + 8)^2\)
28. \(3x(5x - 3)(5x + 3)\)
29. \(3x(x - 6)(x + 2)\)
30. \(4x(x - 7)(x - 4)\)
31. \(5(y + 5)(y - 5)\)
32. \(y^2(3x - 4)(x + 1)\)
33. \(x(x + 12)(x - 2)\)
34. \(3x(x - 5)(x + 3)\)

37. \((2x + 7)(x - 1)\)

38. \((3x - 1)(x - 4)\)

39. \((x + 2)(2x + 5)\)

40. \((4x - 1)(x - 3)\)

41. \((2x + 5)(2x + 1)\)

42. \(x(6x + 1)(x + 5)\)
ZERO PRODUCT PROPERTY AND QUADRATICS

If \(a \cdot b = 0 \), then either \(a = 0 \) or \(b = 0 \).

Note that this property states that at least one of the factors MUST be zero. It is also possible that all of the factors are zero. This simple statement gives us a powerful result which is most often used with equations involving the products of binomials. For example, solve \((x + 5)(x - 2) = 0\).

By the Zero Product Property, since \((x + 5)(x - 2) = 0\), either \(x + 5 = 0\) or \(x - 2 = 0\). Thus, \(x = -5\) or \(x = 2\).

The Zero Product Property can be used to find where a quadratic crosses the x-axis. These points are the x-intercepts. In the example above, they would be \((-5, 0)\) and \((2, 0)\).

Use factoring and the Zero Product Property to find the x-intercepts of each parabola below. Express your answer as ordered pair(s).

9. \(y = x^2 - 3x + 2\)
10. \(y = x^2 - 10x + 25\)
11. \(y = x^2 - x - 12\)
12. \(y = x^2 - 4x - 5\)
13. \(y = x^2 + 2x - 8\)
14. \(y = x^2 + 6x + 9\)
15. \(y = x^2 - 8x + 16\)
16. \(y = x^2 - 9\)

Answers

9. \((1, 0)\) and \((2, 0)\)
10. \((5, 0)\)
11. \((-3, 0)\) and \((4, 0)\)
12. \((5, 0)\) and \((-1, 0)\)
13. \((-4, 0)\) and \((2, 0)\)
14. \((-3, 0)\)
15. \((4, 0)\)
16. \((3, 0)\) and \((-3, 0)\)
SOLVING LINEAR SYSTEMS

You can find where two lines intersect (cross) by using algebraic methods. The two most common methods are **SUBSTITUTION** and **ELIMINATION** (also known as the addition method).

Example 1

Substitution can also be used when the equations are **not** in y-form.

Use substitution to rewrite the two equations as

\[4(-3y + 1) - 3y = -11 \]

by replacing \(x \) with \(-3y + 1 \), then solve for \(y \) as shown at right.

\[x = -3y + 1 \]
\[4x - 3y = -11 \]

Substitute \(y = 1 \) into \(x = -3y + 1 \). Solve for \(x \), and write the answer for \(x \) and \(y \) as an ordered pair, \((1, -2) \). Substitute \(y = 1 \) into \(4x - 3y = -11 \) to verify that either original equation may be used to find the second coordinate.
Example 2

When you have a pair of two-variable equations, sometimes it is easier to **eliminate** one of the variables to obtain one single variable equation. You can do this by adding the two equations together as shown in the example below.

Solve the system at right:

\[
\begin{align*}
2x + y &= 11 \\
x - y &= 4
\end{align*}
\]

To eliminate the \(y \) terms, add the two equations together.

\[
\begin{align*}
2x + y &= 11 \\
x - y &= 4 \\
3x &= 15
\end{align*}
\]

then solve for \(x \).

\[
\begin{align*}
3x &= 15 \\
x &= 5
\end{align*}
\]

Once we know the \(x \)-value we can substitute it into either of the original equations to find the corresponding value of \(y \).

Using the first equation:

\[
\begin{align*}
2x + y &= 11 \\
2(5) + y &= 11 \\
10 + y &= 11 \\
y &= 1
\end{align*}
\]

Example 3

You can solve the system of equations at right by elimination, but before you can eliminate one of the variables, you must adjust the coefficients of one of the variables so that they are additive opposites.

To eliminate \(y \), multiply the first equation by 3, then multiply the second equation by \(-2\) to get the equations at right.

\[
\begin{align*}
9x + 6y &= 33 \\
-8x - 6y &= -28
\end{align*}
\]

Next eliminate the \(y \) terms by adding the two adjusted equations.

\[
\begin{align*}
9x + 6y &= 33 \\
-8x - 6y &= -28 \\
\hline
x &= 5
\end{align*}
\]

Since \(x = 5 \), substitute in either original equation to find that \(y = -2 \). Therefore, the solution to the system of equations is \((5, -2)\).

You could also solve the system by first multiplying the first equation by \(4 \) and the second equation by \(-3\) to eliminate \(x \), then proceeding as shown above to find \(y \).
Solve the following systems of equations to find the point of intersection \((x, y)\) for each pair of lines.

1. \(y = x - 6\)
 \(y = 12 - x\)

3. \(x = 7 + 3y\)
 \(x = 4y + 5\)

8. \(x = \frac{1}{2} y + 4\)
 \(8x + 3y = 31\)

9. \(2y = 4x + 10\)
 \(6x + 2y = 10\)

13. \(x + y = 12\)
 \(x - y = 4\)

14. \(2x - y = 6\)
 \(4x - y = 12\)

15. \(x + 2y = 7\)
 \(5x - 4y = 14\)

16. \(5x - 2y = 6\)
 \(4x + y = 10\)

17. \(x + y = 10\)
 \(x - 2y = 5\)

18. \(3y - 2x = 16\)
 \(y = 2x + 4\)

Answers

1. \((9, 3)\)
3. \((13, 2)\)

8. \(\left(\frac{7}{2}, 1\right)\)

9. \((0, 5)\)

13. \((8, 4)\)
14. \((3, 0)\)
15. \((4, 1.5)\)
16. \((2, 2)\)

17. \(\left(\frac{25}{3}, \frac{5}{3}\right)\)
18. \((1, 6)\)
LAWS OF EXPONENTS

BASE, EXPONENT, AND VALUE

In the expression 2^5, 2 is the base, 5 is the exponent, and the value is 32.

2^5 means $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$

x^3 means $x \cdot x \cdot x$

LAWS OF EXPONENTS

Here are the basic patterns with examples:

1) $x^a \cdot x^b = x^{a+b}$
 examples: $x^3 \cdot x^4 = x^{3+4} = x^7$; \hspace{1cm} $2^7 \cdot 2^4 = 2^{11}$

2) $\frac{x^a}{x^b} = x^{a-b}$
 examples: $x^{10} \div x^4 = x^{10-4} = x^6$; \hspace{1cm} $\frac{2^4}{2^7} = 2^{-3}$

3) $(x^a)^b = x^{ab}$
 examples: $(x^4)^3 = x^{4 \cdot 3} = x^{12}$; \hspace{1cm} $(2x^3)^4 = 2^4 \cdot x^{12} = 16x^{12}$

4) $x^{-a} = \frac{1}{x^a}$ and $\frac{1}{x^{-b}} = x^b$
 examples: $3x^{-3}y^2 = \frac{3y^2}{x^3}$; \hspace{1cm} $\frac{2x^5}{y^2} = 2x^5y^2$
Simplify each expression:

1. \(y^5 \cdot y^7 \)
2. \(b^4 \cdot b^3 \cdot b^2 \)
4. \((y^5)^2 \)
5. \((3a)^4 \)
6. \(\frac{m^8}{m^3} \)
7. \(\frac{12x^9}{4x^4} \)
8. \((x^3y^2)^3 \)
9. \(\frac{(y^4)^2}{(y^3)^2} \)
10. \(\frac{15x^2y^7}{3x^4y^5} \)
11. \((4c^4)(ac^3)(3a^2c) \)
12. \((7x^3y^5)^2 \)
13. \((4xy^2)(2y)^3 \)
14. \(\left(\frac{4}{x^2}\right)^3 \)
15. \(\frac{(2a^7)(3a^2)}{6a^3} \)
16. \(\left(\frac{5m^3n}{m^5}\right)^3 \)
17. \((3a^2x^3)^2(2ax^4)^3 \)
18. \(\left(\frac{x^3y}{y^4}\right)^4 \)
19. \(\left(\frac{6y^2x^8}{12x^3y^7}\right)^2 \)
20. \(\left(\frac{2x^5y^3}{8x^7y^{12}}\right)^3 \)

Answers

1. \(y^{12} \)
2. \(b^9 \)
4. \(y^{10} \)
5. \(81a^4 \)
6. \(m^5 \)
7. \(3x^5 \)
8. \(x^9y^6 \)
9. \(y^2 \)
10. \(\frac{5y^2}{x^2} \)
11. \(12a^6c^8 \)
12. \(49x^6y^{10} \)
13. \(32xy^5 \)
14. \(\frac{64}{x^6} \)
15. \(a^6 \)
16. \(\frac{125n^3}{m^6} \)
17. \(72a^7x^{18} \)
18. \(\frac{x^{12}}{y^{12}} \)
19. \(\frac{x^{10}}{4y^{10}} \)
20. \(16x^{10}y^5 \)